Alternative splicing governs sulfation of tyrosine or oligosaccharide on peptidylglycine alpha-amidating monooxygenase.

نویسندگان

  • H Y Yun
  • H T Keutmann
  • B A Eipper
چکیده

Peptidylglycine alpha-amidating monooxygenase (PAM) catalyzes the COOH-terminal alpha-amidation of neuro-endocrine peptides through the sequential action of monooxygenase and lyase domains contained within this bifunctional protein. Alternative splicing leads to the expression of soluble and integral membrane bifunctional PAM proteins as well as a soluble monofunctional monooxygenase. In order to determine how alternative splicing affects post-translational modification of PAM proteins, we investigated the sulfation of PAM proteins expressed in stably transfected hEK-293 cells. Metabolic labeling with [35S]SO4(2-) or [35S]methionine and immunoprecipitation demonstrated that [35S]SO4(2-) was efficiently incorporated into PAM proteins that have the noncatalytic exon A region following the monooxygenase domain (PAM-1 and PAM-4) and into a soluble bifunctional PAM protein (PAM-3). Alkaline hydrolysis, radiosequencing, and deglycosylation experiments demonstrated the presence of a sulfated tyrosine (Tyr965) in the COOH-terminal domain of PAM-3 and multiple sulfated O-glycans in the exon A region of PAM-1 and PAM-4. A mutant PAM-3 protein in which Tyr965 was changed to Ala965 (PAM-3/Y965A) was not sulfated and exhibited monooxygenase and lyase activities similar to those of wild type PAM-3. Pulse-chase and temperature block experiments showed that the PAM-3/Y965A protein exits the trans-Golgi network faster than wild type PAM-3. Thus inclusion of exon A results in the sulfation of O-glycans, while elimination of the transmembrane domain results in the sulfation of Tyr965.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The multifunctional peptidylglycine alpha-amidating monooxygenase gene: exon/intron organization of catalytic, processing, and routing domains.

Peptidylglycine alpha-amidating monooxygenase (PAM; EC 1.14.17.3) is a multifunctional protein containing two enzymes that act sequentially to catalyze the alpha-amidation of neuroendocrine peptides. Peptidylglycine alpha-hydroxylating monooxygenase (PHM) catalyzes the first step of the reaction and is dependent on copper, ascorbate, and molecular oxygen. Peptidyl-alpha-hydroxyglycine alpha-ami...

متن کامل

Expression of individual forms of peptidylglycine alpha-amidating monooxygenase in AtT-20 cells: endoproteolytic processing and routing to secretory granules

Peptidylglycine alpha-amidating monooxygenase (PAM: EC 1.14.17.3) is a bifunctional protein which catalyzes the COOH-terminal amidation of bioactive peptides; the NH2-terminal monooxygenase and mid-region lyase act in sequence to perform the peptide alpha-amidation reaction. Alternative splicing of the single PAM gene gives rise to mRNAs generating PAM proteins with and without a putative trans...

متن کامل

Prevalence and turnover of peptidylglycine alpha-amidating monooxygenase mRNA in atrial cardiomyocytes.

Peptidylglycine alpha-amidating monooxygenase (PAM), the enzyme responsible for the alpha-amidation of neuroendocrine peptides, is more prevalent in the atrium of the heart than in pituitary or brain. RNase protection assays indicate that PAM transcripts account for approximately 0.5% of the mRNA in the neonatal atrium and 0.06% of the mRNA in the neonatal ventricle. In primary atrial cardiomyo...

متن کامل

Intermittent hypoxia activates peptidylglycine alpha-amidating monooxygenase in rat brain stem via reactive oxygen species-mediated proteolytic processing.

Intermittent hypoxia (IH) associated with sleep apneas leads to cardiorespiratory abnormalities that may involve altered neuropeptide signaling. The effects of IH on neuropeptide synthesis have not been investigated. Peptidylglycine alpha-amidating monooxygenase (PAM; EC 1.14.17.3) catalyzes the alpha-amidation of neuropeptides, which confers biological activity to a large number of neuropeptid...

متن کامل

Genetic determinants of amidating enzyme activity and its relationship with metal cofactors in human serum

BACKGROUND α-amidation is a final, essential step in the biosynthesis of about half of all peptide hormones and neurotransmitters. Peptidylglycine α-amidating monooxygenase (PAM), with enzymatic domains that utilize Cu and Zn, is the only enzyme that catalyzes this reaction. PAM activity is detected in serum, but its significance and utility as a clinical biomarker remain unexplored. METHODS ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 269 14  شماره 

صفحات  -

تاریخ انتشار 1994